AG百家乐大转轮-AG百家乐导航_怎么看百家乐走势_全讯网官网 (中国)·官方网站

Research News

Prof. Jun Cui’s team from School of Life Sciences and Prof. Chun-Wei Li’s team from First Affiliated Hospital jointly reveal a novel mechanism for environmental organic pollutants-mediated cellular inflammation and tissue damage

Share
  • Updated: May 30, 2021
  • Written:
  • Edited:
Source: School of Life Sciences
Edited by: Tan Rongyu, Wang Dongmei

Perfluoroalkyl substances (PFAS) are widely used in industrial manufacturing processes and consumer products due to their joint hydrophobic and oleophobic properties. These compounds are detected in many routinely used items during our daily life, such as coats, papers, food contact materials, cleansers, paints, etc. PFAS are hard to be degraded under natural environmental conditions and can also be detected in the environment, plants and wildlife. Human populations are exposed to PFAS via ingestion of drinking water and food, inhalation of air and dust, and contact with contaminated media. Emerging evidence suggested an accumulation of PFAS in the human body is associated with adverse health effects, including immune-related health conditions (like allergic diseases), metabolic dysregulation (like nonalcoholic fatty liver disease), and neurodevelopmental delays. Among the various PFAS, perfluorooctane sulfonate (PFOS) is the most common type studied in relation to human health and was added to the Stockholm Convention’s list of globally restricted Persistent Organic Pollutants in 2009 under United Nation Environment Programme.

Several studies have indicated that oxidative and inflammatory responses are involved in PFOS-induced cell injury and tissue damage. However, most experimental results about PFOS are based on descriptive studies and the mechanisms underlying PFAS-induced tissue inflammation remain poorly understood. One critical question is how PFOS is recognized in the cells and trigger cellular inflammatory responses.

In this study, researchers revealed both the acute and chronic PFOS exposure induce inflammatory cytokine production (IL-1β, TNF-α and IL-6) and tissue injury. Mechanistically, researchers found that the level of cytosolic Ca2+ was obviously up-regulated in PFOS- treated cells. And the increase of cytosolic free Ca2+ contributes to the activation of downstream kinases (protein kinase C), leading to the activation of NF-κB signaling or JNK signaling. The phosphorylated JNK can promote BAX translocation to mitochondrial, leading to the interaction between BAX and CypD or BAK. BAX/BAK- and BAX/CypD-mediated pathway contributes to PFOS-triggered the mtDNA release, resulting in AIM2 inflammasome activation. They established PFOS acute exposure mouse model and PFOS-induced asthmatic exacerbation mouse model, then found that PFOS-induced tissue damage (liver, lung and kidney) and the inflammatory patterns under PFOS+OVA treatment were markedly reduced in Aim2-/- mice, indicating that AIM2 inflammasome activation contributes to PFOS-induced tissue inflammation and asthmatic exacerbation.


Fig. 1 Schematic diagram to illustrate the mechanisms that PFOS exposure induces AIM2 inflammasome activation to promote tissue damage through the Ca2+-PKC-NF-κB/JNK-BAX/BAK-mtDNA axis.

    Collectively, the researchers found that PFOS activates the AIM2 inflammasome in a process involving non-oxidized mitochondrial DNA release through the Ca2+-PKC-NF-κB/JNK-BAX/BAK axis (Fig. 1). This research suggests a link between environmental organic pollutants (e.g., PFOS), intracellular danger signals (mtDNA) and sensor (AIM2 inflammasome) to the host effect (cellular inflammation and tissue damage), which is the essential mechanism triggering the PFOS-associated inflammatory diseases.

    This work entitled "Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome" was published online in the international prestigious journal Nature Communications on May 18th, 2021. Prof. Jun Cui and Prof. Chun-Wei Li are the corresponding authors. Dr. Li-Qiu Wang is the first author. This research is supported by the National Natural Science Foundation of China.

    Link to the paper: https://www.nature.com/articles/s41467-021-23201-0
TOP
至尊百家乐qvod| 百家乐官网英皇娱乐| 百家乐游戏群号| 澳门百家乐是怎样赌| 榆社县| 爱拼百家乐官网的玩法技巧和规则 | 百家乐英皇娱乐网| 百家乐官网有方法赚反水| 百家乐官网永利娱乐平台| 中国百家乐技巧软件| 百家乐官网巴厘岛娱乐城| 威尼斯人娱乐城客户端| 百家乐官网是多少个庄闲| 大发888娱乐场下载新澳博| 澳门百家乐官网大揭密| 新澳门百家乐的玩法技巧和规则 | 百家乐公式与赌法| 百家乐官网机器出千| 利高娱乐| 新思维百家乐官网投注法| 网上百家乐怎么破解| 百家乐官网有没有攻略| 大发888赌场娱乐网规则| 百家乐官网在线娱乐平台| 大发888官方网站登陆| 百家乐有几种玩法| 百家乐官网赚水方法| 太阳城ktv| 濮阳县| 世嘉百家乐的玩法技巧和规则| 百家乐官网视频游戏会员| 玩百家乐如何硬| 百家乐官网技术交流群| 大发888技巧| 百家乐官网真人现场| 百家乐作弊| 百家乐金海岸软件| 澳门百家乐官网有没有假| 博彩排行| 百家乐俄罗斯轮盘转盘套装| 免费百家乐官网倍投工具|