AG百家乐大转轮-AG百家乐导航_怎么看百家乐走势_全讯网官网 (中国)·官方网站

Research News

? Ping Lan and Zhen He's group reveals a novel mechanism of the "Creeping fat" formation in Crohn's disease

Share
  • Updated: Dec 22, 2024
  • Written: Liu Shanqing, Dai Xi'an, Jane Wen Yang
  • Edited: Tan Xi, Feng Xianzhe

Recently, a research titled "Microbiota-induced alteration of kynurenine metabolism in macrophages drives formation of creeping fat in Crohn’s disease," was published online in the Cell Host and Microbe (IF=20.6). This study was led by Professor Ping Lan and Chief Physician Zhen He from the Sixth Affiliated Hospital of Sun Yat-sen University (SYSU). The researchers unveiled a novel mechanism in which alterations of kynurenine metabolism in macrophages, triggered by mesenteric microbiota, played a crucial role in the formation of creeping fat (CrF) in Crohn's disease (CD). This groundbreaking work provides a new therapeutic targets for CrF and a novel insights to improve the prognosis of CD patients.

CD is characterized by its segmental, asymmetric, and chronic penetrating inflammation, primarily involving the terminal ileum and colon. It has become one of the common digestive diseases in China. Most CD patients require long-term medication or even repeated surgical treatment. Hyperplasia and migration of mesenteric adipose tissues, which expands and wraps specifically around sites of intestinal inflammation, is known as CrF. CrF is one of the characterized histopathologic changes in CD patients.

Alteration of the microbial composition and function is one of the crucial mechanisms for the CD development. The team of Ping Lan and Zhen He have been committed to microbial research of CD. Their previous study has demonstrated the role of mesenteric bacteria and their crucial virulence factors in the colitis development by the integration of multi-omics data, endoscopic follow-up, in vivo and in vitro experiments. These findings have been published in the journals Microbiome (IF=13.8) and Advanced science (IF=14.3). Furthermore, their team explore the therapeutic potential of the small molecule compounds and novel probiotics in CD development. These findings have been published in the journals Molecular therapy (IF=12.1) and EBioMedicine (IF=9.7). Although clinical practices have observed that inclusion of the mesentery in ileocolic resection for CD is associated with reduced surgical recurrence, the underlying mechanism how microbiota mediate the formation of CrF remains unclear.

To explore the role of mesenteric microbiota in the formation of CrF, the researches collected the CrF from CD patients for single-nucleus RNA (snRNA) sequencing. This analysis found that the strongest impact of myeloid cells was found on the adipocytes or adipose stem and progenitor cells (ASPCs). Utilizing co-culture system and different mouse models, the researchers demonstrated that the commensal Achromobacter pulmonis (A.pulmonis) induces mesenteric adipogenesis through macrophages alteration.

Subsequently targeted metabolome analysis revealed that L-kynurenine was the most enriched metabolite in CrF. L-kynurenine is converted from tryptophan via the key rate-limiting enzyme indoleamine 2,3-dioxygenase 1 (IDO1). Leveraging single-cell RNA (scRNA) sequencing of mouse mesenteric tissues and macrophage-specific IDO1 knockout mice, the researchers demonstrated that up-regulation of IDO1 in macrophages enhanced the synthesis of L-kynurenine and drove the mesenteric adipogenesis.

Mechanistically, the researchers analyzed the snRNA dataset and established adipocyte-specific aryl hydrocarbon receptors (AHR) knockout mice model. They verified that L-kynurenine from macrophages mediate the mesenteric adipogenesis by AHR in adipocytes. Based on these findings, the researchers further observed that administration of an IDO1 inhibitor or bacteria engineered to degrade L-kynurenine alleviates mesenteric adipogenesis in mice.

In conclusion, the researchers integrated several cutting edge technologies including single-cell RNA sequencing, targeted metabolomics and several animal models in this study. They demonstrated that mesenteric colonization of microbiota mediated mesenteric adipogenesis through an alteration of L-kynurenine metabolism in macrophages and the action of AHR in adipocytes. From the perspective of microbiota, the researchers unveiled a novel mechanism of the CrF formation in CD, providing a new therapeutic targets for CrF and a novel insights for the improvement of the prognosis of CD patients.

This research was supported by National Key R&D Program of China and National Natural Science Foundation of China. Dr. Jinjie Wu from the Department of Colorectal Surgery, Dr. Wanyi Zeng from the Department of Laboratory Medicine, and Dr. Hongyu Xie from the Department of Anesthesiology are co-first authors of the paper.

TOP
大发888开户即送58| 网上百家乐官网哪里好| 大发888官方pt老虎机| 巍山| 百家乐官网包赢技巧| 澳门百家乐娱乐城怎么样| 卡迪拉娱乐| 自贡百家乐赌场娱乐网规则| 百家乐官网在线娱乐平台| 百家乐作弊演示| 太阳城百家乐客户端| 百家乐官网辅助分析软件| 百家乐合作| 百家乐真人游戏网上投注| e世博线上娱乐| 全讯网新3| 太阳城百家乐祖玛| 网络百家乐官网赌博赢钱| 百家乐色子玩法| 百家乐官网网络视频游戏| 大发888| 金城百家乐买卖路| 网上百家乐官网赌场娱乐网规则 | 广丰县| 大发888真人游戏平台| 百家乐官网平注法口诀技巧 | 大发888下载客户端| 百家乐大小技巧| 百家乐官网赌博讨论群| 宣城市| 盈禾娱乐场| 查找百家乐群| 博盈百家乐游戏| 顶级赌场官网下载| 大发888官方df888gwyxpt| 奔驰百家乐游戏电玩| 百家乐投注方法投资法| 百家乐官网追号工具| 百家乐官网视频游戏网址| 申博太阳城管理网| 广州百家乐娱乐场|